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Abstract—In a cognitive radio network, it is indispensable
to assign common control channels for group operations of
the secondary users of the spectrum. The assignment requires
that multiple secondary users establish the least amount of
frequency channels among them while each chooses a channel
that has minimum interference to its nearby primary users.
We model this problem as a strategic game and design its
utility function such that the game is a potential game. A set
of pure Nash equilibria are found by locating the local optima of
the potential function. We develop sequential and asynchronous
updates of game players’ strategies using the best response
dynamic. In order for the search to escape the local optimum
and reach the global optimum of the potential function, we adopt
simulated annealing in the sequential and asynchronous updates
of the strategies. The optimal assignment of the common control
channel is obtained accordingly and the convergence property is
analyzed for these updating schemes.

I. INTRODUCTION

In a cognitive radio network, multiple secondary users share
the spectrum with the primary users for efficient use of the
radio spectrum. The incumbent primary users have licensed
access to the spectrum. The secondary users actively monitor
the radio environment and restrict their transmissions accord-
ing to the interference-power constraint set by each primary
user [1]. For a wireless network that consists of multiple sec-
ondary users, a common control channel is indispensable for
various group operations such as channel access negotiation,
spectrum management, network cooperation, and adjustment
upon changes in primary user activity or network topology.
For example, previous researches on dynamic spectrum access
of the cognitive radio network rely on the existence of a
common control channel among the secondary users [2]–
[4]. Other researches on distributed spectrum allocation [5]
and distributed spectrum sharing [6] have assumption that the
secondary users can exchange information by some means.

To establish the common control channel, the secondary
users continuously sense the spectrum for “high quality”
frequency channels that have no or minimum primary user ac-
tivity. A common control channel may have a limited coverage
area due to spectrum heterogeneity caused by the distribution
of diverse primary users. A group of closely located secondary
users may agree on one frequency to be used as a control
channel while other secondary users may choose another
frequency. It is usually desirable to increase the coverage
of the common control channels, because that reduces the
number of control channels and incurs less control signaling
overhead. In addition, it is important that the common control

channel can be quickly reassigned to adapt to changes of
the primary user activity. Doerr et al. proposed a method
for control channel assignment that simulates the behavior
of a school of fish [7]. Their method is characterized by
cohesion and obstacle alignment. Chen et al. proposed an
algorithm for control channel assignment that is based on ant
colony optimization in swarm intelligence [8]. Their algorithm
uses the Hello message sent by each secondary radio as the
pheromone.

In this paper, we propose a scheme to assign common
control channels for multiple secondary users from a game-
theoretic perspective. The task is to assign as few as possi-
ble frequency channels as common control channels in the
secondary user network. Each secondary user prefers the
frequency channels with no or minimum primary user activity
perceived by itself. The problem of common control channel
assignment is modeled as a potential game. It has a global
potential function onto which the incentive of all game players,
i.e. the secondary users, can be mapped. The secondary users
update their game strategies by choosing available frequency
channels as control channels. A set of pure Nash equilibria
can be found by locating the local optima of the potential
function. In order for the search to escape the local optimum
and reach the global optimum of the potential function, we
adopt a probabilistic method called simulated annealing in the
process of updating each secondary user’s strategy. Using the
best response dynamic with simulated annealing, the updating
process has a better chance to achieve the optimal assignment
of the common control channel that is Pareto efficient. The
convergence property is analyzed for these updating schemes.

II. SYSTEM MODEL

In a cognitive radio network, the secondary users (SUs)
sense the spectrum and exploit the frequency channels that
are not used by the primary users (PUs). Every SU senses
the spectrum holes and makes its choice of possible control
channels. It also periodically sends its choice to other SUs
through the permissible channels. We assume that the SUs
can establish some primitive pair-wise connections through
frequency hopping and rendezvous [9]. The overhead of these
primitive pair-wise communications can be high. Each SU
has its choice of preferred frequency channels and receives
the preferences of other SUs. Based on such information, the
SUs need to agree on as few as possible frequency channels
as their common control channels. Each SU tends to agree
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on the frequency channel commonly available to the largest
number of its neighbors. Due to spectrum heterogeneity caused
by the distribution of diverse PUs, geographic clusters of
SUs may form. The SUs within a cluster use one frequency
channel as the common control channel. The communication
between the SUs of two different clusters that use two different
common control channels can be achieved through a gateway
SU. However, more gateways generate more communication
overhead within the network.

We consider N SUs sharing the spectrum with the in-
cumbent PUs in a cognitive radio network. Suppose that the
shared spectrum can be divided into L frequency channels.
Let L denotes the set of all the channels, L = {1, 2, . . . , L}.
Each SU can monitor the PU activity and sense the channel
usage in its vicinity. The ith SU assigns a value of channel
quality to each of the L frequency channels, that is qi(l) with
i ∈ N = {1, 2, . . . , N} and l ∈ L. The channel quality
is a metric that indicates the interference-power constraint
imposed by the PUs. With a higher channel quality, the
interference constraint is less tight such that the channel is
more available for secondary user transmission. Each SU
prefers the frequency channels with better quality as the
control channel. In this paper, we assume that the distributions
of the channel qualities are similar in geographic proximity,
but the distributions differ more with farther distance between
two locations. In our future work, we will take into account the
communication channel quality of two SUs as whether they
are in close proximity or far apart. It should be noted that,
when two distant SUs sense a same frequency channel with
good quality, they may not be able to use that channel as the
common control channel because a direct link between them
is difficult to establish.

The problem of common control channel assignment can be
modeled as a strategic game

a : 〈N , {Si}, {ui}〉 (1)

• N is the finite set of N SUs as the N game players.
Player i is the ith SU, i ∈ N .

• Si (i ∈ N ) is the set of strategy available to player i. It
is the available frequency channels that the ith SU can
choose as the control channel. The overall strategy set
of all the players, i.e. the strategy space of the game, is
S = ×i∈NSi.

• ui : S → R (i ∈ N ) is the utility function of player i.
For every strategy combination {s1, . . . , sN} ∈ S , with
si ∈ Si (i ∈ N ), ui(s1, . . . , sN ) ∈ R is the utility of the
ith SU.

Given a strategy combination S = {s1, s2, . . . , sN} ∈ S, si
is the strategy chosen by player i, i ∈ N . Let s−i denote the
combination of strategies of the other (N − 1) players. The
strategy of player i, i.e. the ith SU, is to choose a frequency
channel for use as the common control channel with other SUs.
That is, si := l, l ∈ L. Let s∗i denote the best strategy player i
can respond to the strategy combination s−i of other players,
such that the utility ui(s∗i , s−i) is maximized for a given s−i.
A pure Nash equilibrium is reached at the strategy combination

S∗ = {s∗1, s∗2, . . . , s∗N} such that no player can have any gain
in its utility by changing its strategy unilaterally [10].

III. COMMON CONTROL CHANNEL ASSIGNMENT USING
POTENTIAL GAME THEORY

A. Utility Function Design

A player’s utility is determined by its own strategy as well
as other players’ strategies. Suppose that, before the common
control channel is established, the ith SU can be informed of
other SUs’ strategies through pair-wise communications using
frequency hopping and rendezvous. The utility function of the
ith SU is given by

ui(si, s−i) = λ

N∑
j=1,j 6=i

I(si = sj) + µ(1− λ)qi(si) (2)

where I{·} is the indicator function that equals to 1 when
(si = sj) is true and 0 otherwise. The utility function contains
two criteria. The first criterion reflects the common interest of
multiple players. That is, each SU intends to use a channel
that is most commonly available to other SUs as the control
channel. The second criterion reflects the selfish concern of
each player. That is, each SU wants to use a channel that
has the best quality (perceived by this particular SU) as the
common control channel. The trade-off parameter λ ∈ [0, 1]
determines the relative weights of the two criteria in the utility
function. The normalization factor µ is to ensure that the two
utility criteria are approximately equally weighted when λ =
0.5. We have

µ =
E
[∑N

j=1,j 6=i I(si = sj)
]

E[qi(si)]
. (3)

B. Potential Game

According to the definition of the utility of each player in
(2), the incentive of player i of changing its strategy from
si = k to si = l (k, l ∈ L) is given by

ui(l, s−i)− ui(k, s−i) = λ

N∑
j=1,j 6=i

(I(sj = l)− I(sj = k))

+µ(1− λ)(qi(l)− qi(k)). (4)

We definite a global utility function called the potential
function of Game a as

Φ(S) = λ
∑
i∈N

i−1∑
j=1

I(si = sj) + µ(1− λ)
∑
i∈N

qi(si) (5)

where S is the strategy combination, S = {s1, s2, . . . , sN}.
The potential function Φ(S) contains two criteria. The first
criterion reflects the collective benefit of the SU network. The
second criterion reflects the sum of individual SU benefits.
The value of the indicator that relates the strategies of any two
players is counted only once in the sum in the first criterion
of the potential function.

Proposition 1: Game a is an exact potential game with
the utility functions {ui}i∈N given in (2) and the potential
function Φ(S) given in (5).
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Proof : Define a matrix A ∈ RN×N as the indicator matrix.
If the indicator I(si = sj) = 1 for i, j ∈ N and j < i, the
element Aij = 1. Otherwise the element of A is zero. Matrix
A is a lower triangle matrix. Overall, the potential function
of Game a can be written as

Φ(S) = λ1TA1 + µ(1− λ)
∑
i∈N

qi(si) (6)

where 1 is a length-N vector with all ones. When the strategy
of player i is changed from si = k to si = l (k, l ∈ L), the
ith row and the ith column of A change. The accumulated
change in the ith row is

∑i−1
j=1(I(l = sj) − I(k = sj)), and

the accumulated change in the ith colum is
∑N

m=i+1(I(sm =
l)−I(sm = k)). Therefore, the change in the potential function
is given by

Φ(l, s−i)− Φ(k, s−i)

= λ

i−1∑
j=1

(I(l = sj)− I(k = sj)) +

N∑
m=i+1

(I(sm = l)

−I(sm = k))) + µ(1− λ)(qi(l)− qi(k))

= λ

N∑
j=1,j 6=i

(I(sj = l)− I(sj = k))

+µ(1− λ)(qi(l)− qi(k)). (7)

We have

Φ(l, s−i)− Φ(k, s−i) = ui(l, s−i)− ui(k, s−i). (8)

Therefore, Game a is an exact potential game. �
Since the incentives of all the players are mapped onto

the change of the potential function, each player individu-
ally adjusting its strategy will cause a change in its utility
and in the global potential function with the same amount.
Each player sequentially updates its strategy to maximize its
utility, i.e. given s−i the ith SU chooses a si that maximizes
ui(si, s−i). The potential function will eventually reach a local
maximum. At this moment, the potential game stops at a pure
Nash equilibrium. In fact, every finite ordinal potential game
possesses a pure-strategy equilibrium [11].

IV. SIMULATED ANNEALING AND APPROXIMATION TO
THE GLOBAL OPTIMUM

There may be multiple Nash equilibria for potential Game
a. When each SU sequentially updates its strategy si given
s−i, i ∈ N , such that the utility function ui(si, s−i) is
maximized, these N SUs may reach at a stable state (a Nash
equilibrium) and the potential function Φ(S) is at a local
optimum but not the global optimum. Since the search space
is discrete, that is, the strategy sets {Si}i∈N are discrete, in
order to locate a good approximation to the global optimum
of the potential function Φ(S), simulated annealing (SA) can
be used as an efficient scheme for game updating [12], [13].

The SA algorithm evolves a discrete-time inhomogenous
Markov chain x(n). The state x(n) = {s1, . . . , sN} is the
strategy combination of the N SUs at discrete-time n. For the

ith SU, the strategy si can be staying at the current frequency
channel or changing to one of the other (L − 1) frequency
channels. In order to simulate the heat (randomness), we
assume that the ith SU can randomly change its current
strategy to using one of the other (L− 1) frequency channels
with equal probability qsi,s′i = 1/(L − 1), where s′i = l,
l ∈ L − {si}. Each of the N SUs updates its strategy
sequentially according to the following rules.
• If ui(s′i, s−i) ≥ ui(si, s−i), then x(n+ 1) = {s′i, s−i}.
• If ui(s′i, s−i) < ui(si, s−i), then
x(n+ 1) = {s′i, s−i} with probability

ρ = exp

{
ui(s

′
i, s−i)− ui(si, s−i)

T (n)

}
= exp

{
Φ(s′i, s−i)− Φ(si, s−i)

T (n)

}
x(n+ 1) = x(n) = {si, s−i} otherwise.

Therefore, the transition probability is given by

P [x(n+ 1) = {s′i, s−i}|x(n) = {si, s−i}]

=
1

L− 1
exp

{
min(0,Φ(s′i, s−i)− Φ(si, s−i))

T (n)

}
(9)

where T (n) is called the temperature at time n. The tempera-
ture T (n) > 0 and it gradually decreases during the updating
process. The time-series {T (n)} is called a cooling schedule.
It is almost random to choose the next strategy when T is
large, whereas a better choice with a larger Φ is more likely
to be made as T goes to zero.

The allowance of moves that generate a smaller Φ leads
to a decrease in the potential function. Nevertheless, such
“irregular” moves can potentially help the updating process
of the SU strategies escape from the local maxima.

V. ASYNCHRONOUS UPDATE AND ITS CONVERGENCE

As the ith SU receives the strategies of the other SUs, s−i,
through high-overhead pair-wise communications, it revises
its strategy that maximizes its own utility. This is called the
best response dynamic of the strategy updates. The SUs can
update their strategies in a sequential round robin fashion or
at random. Without a centralized synchronization mechanism
or a round robin chain, it is likely that the SUs update their
strategies asynchronously. Suppose that the SUs are myopic
players such that each one only cares about its current utility.
An improvement path of player i is a path of strategies taken
by myopic player i, such that at every time instant k of the
update process, ui(s

(k)
i , s

(k−1)
−i ) > ui(s

(k−1)
i , s

(k−1)
−i ). A finite

potential game has improvement paths of finite length [11].
For potential Game a, the best response takes an improved

path toward a Nash equilibrium. In fact, the best response dy-
namic is equivalent to a local search on the potential function
of a potential game. In any finite potential game, sequential
updates with best response dynamic always converge to a Nash
equilibrium [14]. For asynchronous updates, the following
proposition can be proved along the line with Monderer and
Shapley’s work [11].
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Fig. 1. Game playing with strategy updates using sequential best response
and using sequential best response with simulated annealing. N = 8 SUs and
L = 8 available frequency channels.

Proposition 2: For finite potential Game a, the asyn-
chronous updates using the best response dynamic converge
to a Nash equilibrium almost surely1 in finite time and
every maximal improvement path terminates on an equilibrium
point.

In terms of convergence time, when the best response of
each player can be found in polynomial time, Fabrikant et
al. showed that finding a pure Nash equilibrium in a potential
game is Polynomial Local Search (PLS)-complete [15]. In our
game of common control channel assignment, each updating
SU has only L choices of strategies that correspond to the L
frequency channels that can be used as the control channel.
Each SU picks up one channel out of these L channels that
maximizes its current utility given by (2). Therefore, the
convergence to a Nash equilibrium is fairly quick.

Using the scheme of simulated annealing, we add random-
ness to the update process of the SU strategies. The process is
“heated” up before “cooling” down, such that there is a better
chance for the potential function to escape a local optimum
and converge to the global optimum. The cooling schedule
with respect to the heat that is applied should be regulated
such that the process will eventually “freeze”, i.e. converge.
The convergence of the update process with best response
dynamic and simulated annealing, if it indeed converges, is
destined to be slower than the update process with just best
response dynamic.

For our potential Game a of common control channel
assignment, let S∗ ∈ S denote the optimal strategy combina-
tion that maximizes the potential function Φ(S∗). Since each
SU can remain at its current strategy or change its strategy
by changing its current control channel to any of the other
(L − 1) frequency channels, for any two arbitrary strategy
combinations there always exists a path starting with one

1If only one player can revise its strategy at a time and the same player is
chosen to revise its strategy again and again, the group will never converge
to a Nash equilibrium.
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Fig. 2. Game playing with strategy updates using sequential best response
and using sequential best response with simulated annealing. N = 16 SUs
and L = 16 available frequency channels.

and ending at the other one, regardless of using sequential
updates or asynchronous updates. The following proposition
on the convergence of Game a with simulated annealing can
be derived from the convergence theory proved by Hajek [16].

Proposition 3: If a strategy combination S′ ∈ S has a path
to the optimal strategy combination S∗ ∈ S, d is defined as the
depth such that the smallest value of the potential Φ along the
path is Φ(S′)− d. For every strategy combination S ∈ S that
has a path to S∗, d∗ denotes the maximum depth. The updating
process of Game a with simulated annealing converges if and
only if

lim
n→∞

T (n) = 0 and

∞∑
n=0

e−d
∗/T (n) =∞. (10)

The convergence is in probability such that

lim
n→∞

Pr[x(n) = S∗] = 1 (11)

where the state x(n) is the strategy combination of the N SUs
at discrete-time n. The depth d can be regarded as a measure of
“heat disturbance” that can cause x(n) to escape from a local
maximum of the potential function and eventually become the
optimal state S∗.

Given Proposition 3, a cooling schedule can be designed as

T (n) =
β

log(n)
(12)

where β is a positive constant and the convergence is guaran-
teed if and only if β ≥ d∗.

VI. NUMERICAL RESULTS

We present simulation results of the proposed game-
theoretic approach to common control channel assignment in a
cognitive radio network. The channel quality perceived by the
SU is assumed to be a random variable uniformly distributed
in [0, 1], i.e. qi(l) ∼ U [0, 1]. The utility function of each SU
is formulated according to (2), and the normalization factor µ
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Fig. 3. Number of common control channels at convergence with the first
cooling schedule.

is selected according to (3) such that the two utility criteria
have similar effects on the utility when λ = 0.5.

For potential Game a, each SU is a myopic player that
updates its strategy only to maximize its current utility. When
the sequential updating process is adopted, each SU updates
its strategy in one time unit in a round robin fashion. The
update schemes are based on the best response dynamic or
the best response dynamic with simulated annealing. With the
scheme of simulated annealing, the strategies of the N SUs
define a state of strategy combination that can be transferred
to another state with a transition probability given by (9). Two
cooling schedules are used for the updating process. For the
first cooling schedule, the temperature is given by

T (n) = max(β − ρn, β0), n = 1, 2, . . . (13)

where β = 0.5, β0 = 0.00001, and the temperature decreases
linearly with time at a slope ρ = 0.006. As time goes by, the
temperature approaches 0 and flats out at approximately 0. For
the second cooling schedule, the temperature is given by

T (n) =
β

log(n+ 1)
, n = 1, 2, . . . (14)

where β = 0.5. The temperature decreases following the
inverse of logarithm of time as in (12).

Fig. 1 and Fig. 2 show the evolution of the potential function
Φ(S) as the SUs update their strategies sequentially. Fig. 1
shows the game of common control channel assignment with
N = 8 SUs in the network and L = 8 available frequency
channels. Fig. 2 shows the game with N = 16 SUs and
L = 16 channels. The data are of individual simulation runs.
In the top sub-figures, the updating processes with simulated
annealing (SA) use the first cooling schedule. In the bottom
sub-figures, the updating processes with SA use the second
cooling schedule. It is revealed that the best response (BR)
dynamic with SA has a longer convergence time than the BR-
only dynamic. Nevertheless, when it converges, the BR-SA
scheme has a better chance to reach the global maximum of
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Fig. 4. Number of common control channels at convergence with the second
cooling schedule.

the potential function whereas the BR-only scheme can be
stuck at an inferior local maximum. For the SA schemes, the
temperature T (n) starts with a large value which makes the
strategy update almost random. With the decrease of T (n), the
transition becomes concentrated onto the “correct direction”.

Fig. 3 and Fig. 4 show, at convergence of the updating
process, the number of common control channels used in the
SU network (when N = 8) versus the trade-off parameter
λ in the utility function. When λ is small, the incentive to
use a common channel is weak. Therefore, Game a reaches a
Nash equilibrium where almost every SU chooses a different
frequency channel as the control channel. The chosen channel
has the best quality perceived by each individual SU. When
λ is large, the incentive to use a common channel is strong
such that Game a reaches a Nash equilibrium where almost
all the SU choose the same channel as their common control
channel. Fig. 5 and Fig. 6 show the potential function Φ(S) at
convergence versus the parameter λ. The figures reveal that,
when λ ≈ 0.5 the two criterion of the utility are equally
important, the scheme using SA arrives at a better solution
with fewer common control channels and a larger potential
function. In the simulation, both sequential and asynchronous
updates are used. When the asynchronous updates are used,
the updating events occur according to a Poisson distribution
with an average rate of 8 updating time units (∼ Pois(8)).
The updating process of one SU is independent to the updating
process of any other SU. The asynchronous updates are shown
to have the same strategy results as the sequential updates.

Fig. 7 illustrates the relationship between the common ben-
efit (the first part) and the individual benefit (the second part)
in the potential function as in (5). The solid-line represents
the case where there are N = 8 SUs and L = 8 available
frequency channels. The dashed-line represents the case where
there are N = 16 SUs and L = 16 available frequency
channels. The sequential BR-only dynamic is used as the
updating scheme. With a varying parameter λ, the trade-off
between these two benefits is clearly shown.
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Fig. 5. Potential function at convergence with the first cooling schedule.
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Fig. 6. Potential function at convergence with the second cooling schedule.
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VII. CONCLUSION

In a cognitive radio network, the common control channel
of multiple secondary users is essential for effective network
operations. In this paper, the problem of assigning common
control channels is modeled as a potential game. Each sec-
ondary user is a game player and its game strategy is to choose
an available frequency channel as the control channel. The
utility of each secondary user reflects its common interest and
selfish benefit. A potential function is designed onto which
the incentives of all the secondary users can be mapped.
According to the characteristics of potential games, sequential
and asynchronous strategy updates are developed that use the
best response dynamic to reach a Nash equilibrium. Moreover,
simulated annealing is adopted in the updating process in order
to escape a Nash equilibrium which is not Pareto efficient. The
proposed scheme has a better chance to obtain the optimal
assignment of the common control channel within finite time.
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